Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone

نویسندگان

  • Bjarne Madsen Härdig
  • Jonas Carlson
  • Anders Roijer
چکیده

BACKGROUND Ultrasound (US) has been used to enhance thrombolytic therapy in the treatment of stroke. Considerable attenuation of US intensity is however noted if US is applied over the temporal bone. The aim of this study was therefore to explore possible changes in the effect of thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US) exposure. METHODS Clots were made from fresh venous blood drawn from healthy volunteers. Each clot was made from 1.4 ml blood and left to coagulate for 1 hour in a plastic test-tube. The thrombolytic drugs used were, 3600 IU streptokinase (SK) or 0.25 U reteplase (r-PA), which were mixed in 160 ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of 1 MHz and intensities ranging from 0.0125 to 1.2 W/cm2. For each thrombolytic drug (n = 2, SK and r-PA) and each intensity (n = 9) interventional clots (US-exposed, n = 6) were submerged in thrombolytic solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n = 6) were left unexposed to US.To evaluate the effect on clot lysis, the haemoglobin (Hb) released from each clot was measured every 20 min for 1 hour (20, 40 and 60 min). The Hb content (mg) released was estimated by spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical analysis was performed using Wilcoxon's signed rank test. RESULTS Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9 and 1.2 W/cm2 at all times (P < 0.05). Continuous-wave ultrasound significantly increased the effects of r-PA on clot lysis following 20 min exposure at 0.9 W/cm2 and at 1.2 W/cm2, following 40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm2, and following 60 min of exposure at 0.05 0.3, 0.6, 0.9 and at 1.2 W/cm2 (all P < 0.05). CONCLUSION Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-treated blood clots, but decreased clot lysis of SK-treated clots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of ultrasound-potentiated fibrinolysis in vitro.

We have characterized the effects of ultrasound on fibrinolysis in vitro to investigate the mechanism of ultrasonic potentiation of fibrinolysis and to identify potentially useful ultrasound parameters for therapeutic application. Radiolabeled clots in thin walled tubes were exposed to ultrasound fields in a water bath at 37 degrees C, and lysis was measured by solubilization of radiolabel. Ult...

متن کامل

Exposure to ultrasound decreases the recalcification time of platelet rich plasma.

-Human blood was withdrawn, anticoagulated with citrate, and centrifuged, yielding platelet rich plasma (PRP). Recalcification times (i.e. the time taken to form a clot following the addition of sufficient calcium ions) were measured with a semiautomatic device. There were no changes in the recalcification time of PRP sample immediately following exposure to continuous wave 1 MHz ultrasound at ...

متن کامل

Effects of Low-Intensity Continuous Ultrasound on Hematological Parameters of Rats

Background:Low intensity ultrasound (US) has some well-known bio-effects which are of great importance to be considered.Objectives: We conducted the present study to investigate the effects of low intensity continuous ultrasound on blood cells count in rat.Methods: Rats were anesthetized and blood samples were collected before US exposure. Then, they were exposed to US with nominal intensity of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Cardiovascular Disorders

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008